(8z^2-x)(z^3-8z^2x+2zx^2-x^3)=

Simple and best practice solution for (8z^2-x)(z^3-8z^2x+2zx^2-x^3)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8z^2-x)(z^3-8z^2x+2zx^2-x^3)= equation:


Simplifying
(8z2 + -1x)(z3 + -8z2x + 2zx2 + -1x3) = 0

Reorder the terms:
(-1x + 8z2)(z3 + -8z2x + 2zx2 + -1x3) = 0

Reorder the terms:
(-1x + 8z2)(-8xz2 + 2x2z + -1x3 + z3) = 0

Multiply (-1x + 8z2) * (-8xz2 + 2x2z + -1x3 + z3)
(-1x * (-8xz2 + 2x2z + -1x3 + z3) + 8z2 * (-8xz2 + 2x2z + -1x3 + z3)) = 0
((-8xz2 * -1x + 2x2z * -1x + -1x3 * -1x + z3 * -1x) + 8z2 * (-8xz2 + 2x2z + -1x3 + z3)) = 0

Reorder the terms:
((-1xz3 + 8x2z2 + -2x3z + 1x4) + 8z2 * (-8xz2 + 2x2z + -1x3 + z3)) = 0
((-1xz3 + 8x2z2 + -2x3z + 1x4) + 8z2 * (-8xz2 + 2x2z + -1x3 + z3)) = 0
(-1xz3 + 8x2z2 + -2x3z + 1x4 + (-8xz2 * 8z2 + 2x2z * 8z2 + -1x3 * 8z2 + z3 * 8z2)) = 0
(-1xz3 + 8x2z2 + -2x3z + 1x4 + (-64xz4 + 16x2z3 + -8x3z2 + 8z5)) = 0

Reorder the terms:
(-1xz3 + -64xz4 + 8x2z2 + 16x2z3 + -2x3z + -8x3z2 + 1x4 + 8z5) = 0
(-1xz3 + -64xz4 + 8x2z2 + 16x2z3 + -2x3z + -8x3z2 + 1x4 + 8z5) = 0

Solving
-1xz3 + -64xz4 + 8x2z2 + 16x2z3 + -2x3z + -8x3z2 + 1x4 + 8z5 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 3x+2=6.5 | | x+x+2+x+4=-96 | | x+x+2+x+2=-72 | | 2h=30 | | x+x+2+x+4=-72 | | 4/x2 | | 2h=10 | | f(x)=x^2+12x+11 | | X^2-8x-9=2x^2-4x-30 | | 700=700x-2x^2 | | y=700x-2x^2 | | X=14.5+-2.5y | | KR+T=Z-BR | | 2y+2x+3y-1=28 | | (3+6)(3y+6)=36 | | 10+2d=10 | | 5Y^2+40Y+84=X | | -4n/3=12 | | 50x-x^2=49 | | (6x)(9x-1)=0 | | (6x)(9x+1)= | | 20x^2-56x=0 | | F(x)=sin(6x) | | X^2+9Y^2-2X-4Y-28=0 | | 4x^3-32(2x)=0 | | 8x+2x-6=36 | | (8x+9)((8x^2)+2x+3)= | | 3log(9)= | | t^2+3t-20=0 | | 0.75x+0.25(x+12.4)+(x-2.1)= | | (-7x^7)^3x2x^2y^6/y | | 5/73= |

Equations solver categories